Local adaptation of an anuran amphibian to osmotically stressful environments.
نویسندگان
چکیده
Water salinity is an intense physiological stress for amphibians. However, some species, such as Bufo calamita, breed in both brackish and freshwater environments. Because selection under environmentally stressful conditions can promote local adaptation of populations, we examined the existence of geographic variation in water salinity tolerance among B. calamita populations from either fresh or brackish water ponds in Southern Spain. Comparisons were made throughout various ontogenetic stages. A combination of field transplant and common garden experiments showed that water salinity decreased survival probability of individuals in all populations, prolonged their larval period, and reduced their mass at metamorphosis. However, significant population x salinity interactions indicated that the population native to brackish water (Saline) had a higher salinity tolerance than the freshwater populations, suggesting local adaptation. Saline individuals transplanted to freshwater environments showed similar survival probabilities, length of larval period, and mass at metamorphosis than those native to freshwater. This indicates that increased tolerance to osmotic stress does not imply a loss of performance in freshwater, at least during the larval and juvenile phases. Despite the adaptive process apparently undergone by Saline, all populations still shared the same upper limit of embryonic stress tolerance (around 10 g/l), defining a window of salinity range within which selection can act. Significant differences in embryonic and larval survival in brackish water among sibships for all populations suggest the existence of a genetic basis for the osmotic tolerance.
منابع مشابه
Acute Toxicity of a Heavy Metal Cadmium to an Anuran, the Indian Skipper Frog Rana cyanophlyctis
Background: There has been increasing awareness throughout the world regarding the remarkable decrease in amphibian population. For such amphibian population decline several causes have been given. Cadmium, a heavy metal is released both from natural sources (leaching of cadmium rich soils) and anthropogenic activities to the aquatic and terrestrial environments. This study evaluated the toxici...
متن کاملAcute Toxicity of an Organophosphate Insecticide Chlorpyrifos to an Anuran, Rana cyanophlyctis
Background: Chlorpyrifos is an organophosphate pesticide that elicits broad-spectrum insecticidal activity against a number of important arthropod pests. Determining the insecticides’ toxicity to amphibians can give us a better understanding regarding the role of toxicants in amphibian declines. This information would be beneficial to assess their ecological relevance at environmental con...
متن کاملMicrobeads in Sediment, Dreissenid Mussels, and Anurans in the Littoral Zone of the Upper St. Lawrence River, New York.
Global plastic production has exceeded 300 million tons per year (Plastics Europe, 2015). In the marine and freshwater environments, larger plastics abrade and photo-degrade resulting in persistent environmental microplastics that are not effectively removed by existing wastewater treatment plants (WWTPs). The ecological effects of microplastics on the marine environment are poorly understood, ...
متن کاملMicrobeads in Sediment, Dreissenid Mussels, and Anurans in the Littoral Zone of the Upper St. Lawrence River, New York.
Global plastic production has exceeded 300 million tons per year (Plastics Europe, 2015). In the marine and freshwater environments, larger plastics abrade and photo-degrade resulting in persistent environmental microplastics that are not effectively removed by existing wastewater treatment plants (WWTPs). The ecological effects of microplastics on the marine environment are poorly understood, ...
متن کاملInfluence of low levels of water salinity on toxicity of nitrite to anuran larvae.
Reactive nitrogen compounds such as nitrite (NO2(-)) are highly toxic to aquatic animals and are partly responsible for the global decline of amphibians. On some fish and Caudata amphibian species low levels of sodium chloride significantly reduce the toxicity of nitrite. However, the nitrite-salinity interaction has not been properly studied in anuran amphibians. To verify if chloride (Cl(-)) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 57 8 شماره
صفحات -
تاریخ انتشار 2003